

The Success of the Deep Impact Mission

A Study of Risk Management Processes Rick Grammier - Project Manager

Agenda

- State of the Project one year prior to launch
- Contributing causes for this state
- Solutions implemented
- Risk Management in context of solutions
- State of the Project at Launch
- Managing the risks for Encounter
- Summary

State of the Project One Year Prior to Launch (January 2004)

- Already had delayed launch one year (very unusual for a planetary launch)
- Had not completed development of the flight avionics hardware or software
- System level verification and validation program not started
- Fractured team and split responsibilities
- Science instruments completed and delivered
- Serious financial overruns - NASA HQ on the verge of canceling the program

Contributing Causes for State of Affairs

- Rigorous engineering processes either not understood or not followed
 - Cultural differences between JPL and System Contractor
 - Knowledge and experience gaps within the team
 - Independent check and balance process eviscerated
- Reporting process did not provide a clear, overall picture
 - What are the primary issues and threats?
 - What are the plans and approaches for dealing with them?
 - What trends are being seen and what do they mean for the future?
- Ineffective Reviews Process
 - Only going through the motions, no real review rigor and penetration
 - Lack of rigorous follow-up and closure of issues uncovered
- Disorganized and ineffective teaming arrangements
 - Who has product responsibility at each level and at each life cycle phase?
 - Organization with the responsibility didn't necessarily have the knowledge or skills to deliver the product
 - Lack of effective management and leadership at multiple levels

Contributing Causes for State of Affairs - 2

- Lack of understanding and capability to conduct a flight system Validation and Verification (V&V) program
 - Two key V&V processes not implemented
 - Lack of understanding the "Verification" part of V&V
 - Need for very high fidelity test beds
 - No appreciation for data reduction and analysis needs
 - Late system maturation impeded scenario development and test
- Inadequate Flight Operations Concept and Plan
 - Lack of sufficient early staffing and funds
 - Very green team
 - Originally, the system contractor had responsibility
 - Significant experience and cultural mismatch
 - No appreciation for true impact of 1 year launch delay and only 6 months of operations

Solutions - Rigorous Engineering Processes

- JPL's Flight Project Practices and Design Principles
 - Team/Project had previously reviewed, but in piecemeal fashion
 - Lack of understanding in context of Deep Impact implementation
 - The **real value is in the discussion** of whether each requirement is met or not
 - Held several working meetings to go over each requirement
 - Exceptions are OK, but always understand the risk of each exception and the rationale as to why that risk is acceptable
 - New risks captured and tracked in the Project's Risk List
- Re-established Mission Assurance rigor
 - Formed a Mission Assurance Audit Team to determine state of affairs and make recommendations
 - Subsequently formed Tiger Team of experts to implement recommendations and correct deficiencies
 - It was painful and costly, but - you have to do the right thing, right

Solutions - Reporting Process

- Standard Monthly Management Review process was neither sufficient or penetrating
- Created new weekly reporting process
 - Inputs and issues from each lower unit (subsystem level), system engineering level, and intermediate management levels
 - Reporting by each lower unit lead - "get it from the horse's mouth and ask your questions"
 - Highly metrics driven and reported metrics change with the work phase
 - Included a coherent list of work to go at the unit level and progress indicators - aka, the "punch list"
 - Assign action items and follow up on them the very next week
 - Identify new risks for the risk list
- All areas participated!
 - Engineering team, business team, science team, management team

Solutions - Review Process

- Followed the detailed review guidelines that contain scope and content for each required review
 - No more "winging it"
 - It's a lot of work, but if you are going to do it, do it right
- Ensured the independent review board membership and makeup was appropriate for the review being conducted
- Allocated sufficient preparation time and kept it in front of everyone
 - Don't succumb to the inevitable whining about being too busy with day-to-day issues
- At the conclusion of the review:
 - Ensured all issues were captured in writing and understood
 - Ensured each issue had associated action(s), assignee, and due date
 - Checked status weekly to ensure actions rapidly resolved
- For final issue closure, closed the loop with the review board member who generated the issue or action

Solutions - Teaming Arrangements

- Replaced most of the 1st and 2nd tier management team
- Organized product teams to take advantage of flight project experience and specific product knowledge
 - Combined membership from JPL and contractor
 - Only one person ultimately responsible for each subsystem
- Provided continuous management and engineering presence at the contractor site
 - Improved communications, continuous interaction
 - Quickly identify and resolve problems
 - Knowledge transfer
- Hands-on, day-to-day management by the Project Manager and Deputy Project Manager
- Weekly status review meeting served to keep team focused and everyone on the same page

Solutions - Flight System V&V Process

- Implemented "Test as fly and fly as you test" philosophy and process to define test program and content at the system level
 - If you test it this way, then fly it that way. If you are going to fly it in a certain way, then test it that way
 - Exceptions are inevitable, but why are the exceptions OK and how can the risk be mitigated?
 - Similar to Flight Project Practices and Design Principles Process
- Defined and generated an Incompressible Test List
 - Recognizing unforgiving launch and encounter windows, this list defined the tests that must be completed prior to launch or prior to encounter
 - Completion means all data analyzed and all issues resolved, fixed, and re-tested
 - Provided priorities and focus on what needed to be done
 - Expended significant effort on increasing test bed fidelity and validating test bed models
- Additional staff brought on to define and implement the data reduction and analysis capability

Solutions - Effective Risk Management

- Established simple but effective Risk Management Process
 - Generated spreadsheet based Risk List - a living document
 - Active, Accepted and Retired risks
 - Review risks frequently, assign actions and follow-up on those actions
 - All project areas attend these Risk List reviews
 - Assign risk rating to each risk and change as the risk is mitigated or worsens
 - The value of the rating process is in the discussion it engenders and the tremendous increase in understanding/characterization of the risk

"Rigor, penetration, and follow-up"

Likelihood	
1	Very low - Very unlikely
2	Low - Unlikely
3	Moderate - Significant likelihood
4	High - More likely than not
5	Very high - Almost certain

Consequence		
1	Minimal or no impact to mission	
2	Small reduction in mission return	
3	Cannot meet full mission success	
4	Cannot meet minimum mission success	
5	Mission catastrophic - no data returned	

Solutions - Effective Risk Management

• All solutions and processes feed the Risk Management Process

Solutions - Effective Risk Management

- Conducted several, in-depth, risk reviews
 - Risk Review for each mission phase (five)
 - Two Project level risk reviews pre-launch
 - Three Project level risk reviews for encounter

State of Project at Launch

- Encounter related ITL not completed
 - Particularly faulted encounter tests
- Several open issues related to encounter design
- Encounter contingency plans not identified, developed or tested
- Still had test bed fidelity issues to resolve for encounter testing
- Operations team certified/trained, but still green
- Practically every day of 6 month journey to Tempel 1 required spacecraft and test bed activity
- Low risk posture for launch and initial checkout
- Medium to high risk posture for "cruise" and encounter
- ⇒ Significant engineering, development and test of encounter software, sequences and fault protection still required
- ⇒ Too much work remaining for current size of operations team

Solutions (Post Launch)

- Retained majority of development team remaining at launch
- Retained processes used so successfully to get to launch
 - Weekly status report, punch lists, risk reviews, etc.
- Formed Encounter Working Group (EWG) to complete development and V&V of encounter
 - Firewall between EWG and daily spacecraft operations team
 - Activity led by deputy PM
 - Formed an Encounter Red Team to follow and challenge the Project regarding encounter design and verification
- Pretty much 24/7 operation after launch

Encounter Risk Management

- Accurate tracking and closure of all encounter related open items at time of launch
- 3 sigma and 6 sigma testing of encounter sequences
 - Understand what parameters we were most sensitive to
- Generation of encounter decision tree
- Identification of required encounter contingencies
 - Generation and V&V of same
- Conducted several encounter operational readiness tests (ORTs), under both nominal and faulted conditions
- Incorporated changes due to in-flight behavior
 - High Resolution Instrument (HRI) de-focus
 - Star tracker performance
- In flight tests to reduce "first time in flight" items
- Conducted three encounter risk reviews with the Red Team and senior management
- As time started to run out, concentrated more on testing nominal encounter vs. faulted encounter

Encounter Decision Tree

NOMINAL

CONTINGENCY

- 1) Imp = Single String
- Complete Imp Check-out At E-9 Days And Leave On
- 3) Any Failure Except S-band = Dead Impactor
- 4) Probability @ This Point = Negligible

- 1) Probability of Imp Failure Due to TCM-5 = Negligible
- 2) Going to Impactor Internal Power = Most Likely Failure at this Point (1st in Flight) → Probability = Low to Negligible

Possible Failure Modes:

Failed Electrical Separation (1st in Flt.) [Low]
Failed Mechanical Separation (1st in Flt) [Low]
Failed Thrusters Post-Sep. (1st in Flt.) [Low to Negligible]
SCU Reset @ Separation (Flyby or Imp) [Low]

- ► Imp = FP Recovers & Resumes Critical Sequence
- FB = FP Recovers on Same Side or Swaps to Backup if HW Failure = Possible Failed Divert ⇒ Larger Divert Trim Maneuver (i.e., Recoverable)

Encounter Decision Tree

Page 2

NOMINAL CONTINGENCY

Nominal Impact Statistics

Miss - 0.067% Dark - 0.10% Lit Impact - 99.83% Flt. Sys. Impact Statistics > 90%

No

(Criteria)

Yes

Update Ephemeris

NOMINAL

(Criteria)

Possible Failure Modes:

- Incorrect FP Enable/Disable Settings [Low]
- AutoNav Spoof by Cosmic Rays [Low] Solar Flare [Low to Medium]
- S-Band Failure [Low]
- Particle Hits on Flyby at Closest Approach [Low]
- Hot Pixels Form in MRI or ITS Center of CCD Area = AutoNav Failure [Low]
- HRI or MRI Failure [Negligible]

Enough Said!

